The Effect of Additional Layer between Liner and PMMA on Reducing Cracks of Cement Mantle Hip Joints

J. Jamari1,*, Ay Lie Han 2, Eko Saputra1,4, Iwan Budiwan Anwar3,4, and Emile van der Heide4

1Department of Mechanical Engineering, Engineering Faculty, Diponegoro University, Indonesia.
2Department of Civil Engineering, Engineering Faculty, Diponegoro University, Indonesia.
3Orthopaedic and Traumatology Department, Prof. dr. R. Soeharso Orthopaedic Hospital, Indonesia.
4Laboratory for Surface Technology and Tribology, Engineering Technology Faculty, Twente University, Netherlands.

Received 10 October 2017; received in revised form 25 February 2018; accepted 28 February 2018

Abstract

Loosening of the acetabular liner component caused by the failure of the cement mantle is a complex phenomenon in a total hip arthroplasty. This failure is often associated with the occurrence of cracking in the cement mantle. Investigation of this cracking can be performed by fatigue test or simulation. Cracking can be caused by initial cracks (porosity), defects of cement mantle, or stress due to repeated loading. An initial crack may be caused by material defects. The stress depends on the load and on the strength of the material itself. To reduce crack failure, one can minimize the initial crack or optimize the thickness of the cement mantle and reduce stress that occurs in the cement mantle. This study offers a solution for reducing the intensity of stress on the cement mantle by providing an additional metal layer between the liner and the acetabular component cement mantle. The study is performed by simulating static contact using finite element analysis. Results show that the additional layer between the acetabular liner and the cement mantle can significantly reduce the stress on the contact surface of the cement mantle.

Keywords: layer, cement mantle, cracking, fatigue, hip joint

References


* Corresponding author. E-mail address: j.jamari@gmail.com


