Comparative Study on Photovoltaic Pumping Systems Driven by Different Motors Optimized with Sliding Mode Control

Abdelhak Bouchakour1,*, Mostéfa Brahami1 and Abdelhalim Borni2

1Intelligent Control and Electrical Power Systems, Djillali Liabes, University of Sidi Bel Abbes, Algeria.
2Applied Research Unit for Renewable Energies, URAER, Renewable Energy Development Center, Algeria.

Received 16 October 2016; received in revised form 26 January 2017; accepted 31 January 2017

Abstract

This study investigates the performance of three different photovoltaic (PV) water pumping systems driven by three types of motors, namely a separately excited DC motor (DCM), an asynchronous motor (ASM), and a permanent magnet synchronous motor (PMSM), via a DC/DC buck-boost converter coupled to a centrifugal pump. The purpose of this study is to implement a fast and robust control for this type of a nonlinear system, controlled by sliding mode (SM). This paper presents an SM control technique for controlling a DC/DC buck-boost converter to transfer the maximum power delivered by the PV generator. Each component is studied and analyzed to simulate the global system in MATLAB/SIMULINK. The three systems are then compared to determine the overall effectiveness of the proposed command. The study concludes that the ASM-driven PV system yields highly favorable results and requires less maintenance compared with other systems.

Keywords: photovoltaic generator, buck-boost converter, permanent magnet synchronous motor, centrifugal pump

References


* Corresponding author: E-mail: abdelhak.bouchakour@yahoo.fr


