Wireless Low-Power Light-Emitting Device with RGB LED

Mi-So Lee¹, Hea-Ja An¹, Mun-Ho Ryu²,³,⁴, Han-Yeong Oh⁴, Nam-Gyun Kim⁴, Kyoung-Jun Park²,⁴

¹Department of Healthcare Engineering, Chonbuk National University, Jeonju-si, Korea.
²Division of Biomedical Engineering, Chonbuk National University, Jeonju-si, Korea.
³Research Center of Healthcare & Welfare Instrument for the Aged, Chonbuk National University, Jeonju-si, Korea.
⁴Medical Research Center, Color Seven Co., Ltd., Seoul, Korea.

Received 22 November 2016; received in revised form 28 March 2017; accepted 13 April 2017

Abstract

Color therapy is a type of alternative medicine. It utilizes the emission of a specific wavelength of light to treat diseased areas. This study presents a wireless, low-power light-emitting device with RGB LED to conduct color therapy. The device is small-sized, adhesive to the skin, and without a tether line for power or communication. Aided by the property of skin adhesiveness, the device provides a therapeutic effect comparable to that of available devices, over a short radiation distance and consumes low power. The therapeutic dosage parameters including color wavelength combination, LED brightness, and illumination time can be regulated through the smartphone application. The wavelength consistency over intensities and the intensity accuracy were validated. With effective calibration, the emission of light by the LED can be effectively regulated to ensure therapeutic effects.

Keywords: color therapy, RGB LED, color combination, light-emitting device

References


