Robust Multi-Area Economic Dispatch Using Coulomb’s and Franklin’s Laws Based Optimizer

Vadugapalayam Ponnuvel Sakthivel¹*, Murugesan Suman², Palanigounder Duraisamy Sathyia³

¹Department of Electrical and Electronics Engineering, Government College of Engineering, Dharmapuri, India
²Department of Electrical Engineering, FEAT, Annamalai University, Chidambaram, India
³Department of Electronics and Communication Engineering, FEAT, Annamalai University, Chidambaram, India

Received 23 January 2020; received in revised form 15 April 2020; accepted 08 June 2020
DOI: https://doi.org/10.46604/ijeti.2020.5447

Abstract

The multi-area economic load dispatch (MAELD) can reduce running costs through making the areas with more cost-effective units produce more energy. The excess power is transferred to the areas with expensive units. This paper contributes a new physics inspired metaheuristic approach called the Coulomb’s and Franklin’s laws based optimizer (CFLBO) to solve the MAELD problem. The CFLBO approach is developed from Coulomb’s and Franklin’s theories, which comprise attraction/repulsion, probabilistic ionization, and contact stages. The effectiveness of the envisaged CFLBO approach has been examined on three standard test systems with various areas. Results obtained by the CFLBO approach are compared with the exchange market algorithm (EMA) and the existing state-of-the-art approaches to deal with MAELD. Numerical outcomes show the benefits of the quick convergence and better quality of the suggested approach compared to existing strategies. Consequently, the proposed approach is a helpful tool for generation planning in MAELD problems.

Keywords: CFLBO, metaheuristic approach, multi-area economic load dispatch, multi-fuel alternatives

References


* Corresponding author. E-mail address: vp.sakthivel@yahoo.com
Tel.: +918955912345


Copyright© by the authors. Licensee TAETI, Taiwan. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/).